Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
Genomics & Informatics ; : 167-169, 2006.
Article in English | WPRIM | ID: wpr-91152

ABSTRACT

PABAP (Palindrome Analysis by BLAST Program) is an analysis system that identifies palindromic sequences from a large genome sequence up to several megabases long. It uses NCBI BLAST as a searching engine, and data processing such as alignment filtration and detection of inverted repeats which satisfy user- defined parameters is performed by manipulating data after populating into a MySQL database. PABAP outperforms publicly available palindrome search program in that it can detect large palindrome with internal spacer at a faster speed from bacterial genomes. It is a standalone application and is freely available for noncommercial users. AVAILABILITY: This application was implemented with free software (Perl, Apache, MySQL, and NCBI BLAST) and is freely available to noncommercial users upon request. Analysis of user data can be carried out directly at http://chimp.kribb.re.kr/~javamint/palindrome.


Subject(s)
APACHE , Filtration , Genome , Genome, Bacterial
2.
Genomics & Informatics ; : 142-148, 2005.
Article in English | WPRIM | ID: wpr-191506

ABSTRACT

The immune response-related genes have been suggested to be the most favorable genes for positive selection during evolution. Comparing the entire DNA sequence of chimpanzee chromosome 22 (PTR22) with human chromosome 21 (HSA21), we have identified 15 orthologs having indel in their coding sequences. Among them, interferon-alpha receptor-1 gene (IFNAR1), an immuneresponse- related gene, is subjected to comparative genomic analysis. Chimpanzee IFNAR1 showed the same genomic structure as human IFNAR1 (11 exons and 10 introns) except the 3 bp insertion in exon 4. The sequence alignment of IFNAR1 coding sequence indicated that "ISPP" amino acid sequence motif is highly conserved in chimpanzee and other animals including mouse and chicken. However, the human IFNAR1 shows that one proline residue is missing in the sequence motif. The homology modeling of the IFNAR1 structures suggests that the proline deletion in human IFNAR1 leads to the formation of the following alpha-helix, whereas two sequential prolines in chimpanzee IFNAR1 inhibit it. As a result, human IFNAR1 may adopt a characteristic structure distinct from chimpanzee IFNAR1. This human specific trait could contribute to specific immune response in the most optimized manner for humans. Further molecular biological studies on the IFNAR1 will help us to gain insights into the molecular implication of species specific host-pathogen interaction in primate evolution.


Subject(s)
Animals , Humans , Mice , Amino Acid Sequence , Base Sequence , Chickens , Chromosomes, Human , Chromosomes, Human, Pair 22 , Clinical Coding , Exons , Genomics , Host-Pathogen Interactions , Interferon-alpha , Pan troglodytes , Primates , Proline , Sequence Alignment
3.
Genomics & Informatics ; : 61-65, 2005.
Article in English | WPRIM | ID: wpr-40264

ABSTRACT

Comparing 231 genes on chimpanzee chromosome 22 with their orthologous on human chromosome 21, we have found that 15 orthologs have indels within their coding sequences. It was rather surprising that significant number of genes have changed by indel, despite the shorter time since their divergence and led us hypothesize that indels and structural changes may represent one of the major mechanism of proteome evolution in the higher primates. Human T-complex protein 10 like (TCP10L) is a representative having indel within its coding sequence. Gene structure of human TCP10L compared with chimpanzee TCP10L gene showed 16 base pair difference in genomic DNA. As a result of the indel, frame shift mutation occurs in coding sequence (CDS) and human TCP10L express longer polypeptide of 21 amino acid residues than that of chimpanzee. Our prediction found that the indel may affect to dramatic change of secondary protein structure between human and chimpanzee TCP10L. Especially, the structural changes in the C-terminal region of TCP10L protein may affect on the interacting potential to other proteins rather than DNA binding function of the protein. Through these changes, TCP10L might influence gene expression profiles in liver and testis and subsequently influence the physiological changes required in primate evolution.


Subject(s)
Humans , Base Pairing , Chromosomes, Human , Chromosomes, Human, Pair 22 , Clinical Coding , DNA , Frameshift Mutation , Genomics , Liver , Pan troglodytes , Primates , Protein Structure, Secondary , Proteome , Testis , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL